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Lecture 1:

Magnetic order and muon oscillations

Magnetic fields and the muon

Distributions of fields and the spin density wave

With grateful thanks to S.J. Blundell for permission to use 
many of his slides! 



The many faces of magnetism



How do we understand 
the occurrence of 
magnetic order?

Lev Landau (1908-1968)
Philip Anderson 
(1923- )







(a) (b)

Broken symmetry is a cornerstone of CMP
Consider a magnet

T>Tc

These magnets are the same
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Buridan’s donkey



Euler strut
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This has a simple mathematical description

T>Tc T<Tc
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Minima in the free energy may be 
identified



l Phase transitions
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The 4-fold way of broken 
symmetry

l Phase transitions
Mathematical singularity at Tc

l Rigidity
order transmits forces

l New excitations
New particle spectrum

l Defects
Walls that separate different order in different 

places



The magnet

l Order parameter M

l Rigidity: permanent magnetism

l Excitations: magnon particles

l Defects: domain walls x

φ(x)

v

−v
l



Superfluids and superconductors

l Order parameter: <Ψ(x)>

l Rigidity: the supercurrent

l Excitations: Bogolons (via the Higgs mechanism in a 
SC)

l Defects: vortices



l Phase transitions
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Critical exponents t = T-Tc

Three commonly discussed

M ∝ (Tc − T )β T < Tc

M ∝ H1/δ T = Tc

χ = ∂M
∂H

∣∣
H →0

∝ |T − Tc|−γ T → Tc

(1)



Critical exponents
• Heat capacity: C ∼ |t|−α,

• Magnetization: M ∼ (−t)β , for B → 0, T < Tc,

• Magnetic susceptibility: χ ∼ |t|−γ ,

• Field dependence of χ at T = Tc: χ ∼ |B|1/δ,

• Correlation length: ξ ∼ |t|−ν ,

• The correlation function G(r) behaves like

G(r) ∼
{

1
|r|d−2+η |r| ≪ ξ

e−
|r|
ξ |r| ≫ ξ,

}

where r is distance and d is the dimensionality of the system.

Exponents don’t rely on any length scale in the system

t = T-Tc



Critical exponents for mean field theory

α β γ δ ν η
ϵ = 0 (d = 4 , mean field) 0 1

2 1 3 1
2 0

ϵ = 1 O(ϵ) 0.167 0.333 1.167 4 0.583 0
ϵ = 1 O(ϵ2) 0.077 0.340 1.244 4.462 0.626 0.019
3D Ising 0.110 0.327 1.237 4.789 0.630 0.036
2D Ising (exact) 0 1
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Antiferromagnets

Muons work just as well, since they 
measure local magnetic fields

Y.J. Uemura et al., Hyperfine 
Interactions 17, 339 (1984)



How to fit your precession data 

ν = ν0
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Close to the transition

Close to zero temp
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Scaling plots

Example: Cs2AgF4

Phys Rev B 75, 220408 (2007)





Usually we make susceptibility measurements before we 
make measurements with muons



or

Uniformly weakly magnetic    Non-magnetic, with strongly
magnetic impurities

Susceptibility gives average information and therefore
can give the same response for the situations sketched
above 

μSR gives local information and therefore can distinguish
between these two situations.

















The most beautiful magnetic spectrum ever measured?

















Dipole field

B(r) =
µ0

4π
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Dipole field
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Dipole field: example 1: muon separated from 
a moment along z
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Dipole field: example 2, muon separated along x
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Problem:

0

Dipole field: example 3



Dipolar fields

Dipolar fields
can be calculated





Lorentz field

Spins outside the sphere lead to an extra 
contribution B = μ0M/3









TMTSF salts

Stacks of TMTSF molecules Þ 1D chains



TMTSF salts

Very rich
phase diagram

Paul Chaikin (1945 --)



1D electron gas unstable to SDW formation



Spin-density wave
(a)

(b)



Muon data measured on TMTSF2X

L.P. Le et al, PRB 48 7284 (1993)



J0(γµB0t) ≈
(

2

πγµB0t

)
cos

(
γµBt− π

4

)

Pz(t) =
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For large argument



Muon data measured on TMTSF2X

L.P. Le et al, PRB 48 7284 (1993)



SDW phase in (TMTSF)2X

L.P. Le et al, PRB 48 7284 (1993)



Summary

• Static magnetic order can lead to 
oscillations

• Oscillation frequency is an effective order 
parameter for the system

• We are sensitive to local, dipolar fields

• More complex field distributions lead to 
more complicated oscillatory spectra


