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The evolution of the muon spin Sµ(t)
The Larmor equation

Basic principle of mechanics:
Time derivative of angular momentum is equal to the sum of the torques:

d~Sµ(t)
dt = mµ(t)× Bloc(t).

Since
mµ = γµ~Sµ,

by definition of the gyromagnetic ratio, we have

dSµ(t)
dt = γµ Sµ(t)× Bloc(t).

γµ = 851.6 Mrad s−1 T−1.



Basics of motion properties deriving from the Larmor
equation

From
dSµ(t)

dt = γµ Sµ(t)× Bloc(t)

we deduce:

I dSµ(t)
dt · Sµ(t) = 0:

Sµ(t) is a constant of the motion, i.e. Sµ(t) = Sµ(0)
I dSµ(t)

dt · Bloc(t) = 0:
this implies dSµ(t)

dt is perpendicular to Bloc(t).



The transverse and longitudinal polarisation functions
I The polarisation function Pα(t) is the evolution of the projection of the muon

ensemble polarisation along axis α:

Pα(t) =
〈

Sµ,α(t)
Sµ

〉
.

I Sµ ≡ Sµ(t = 0): initial muon beam polarisation

Convention for the axes:
Bext is always parallel to Z.

I in transverse field experiment: Sµ ‖ X→ PX (t) or PY (t).
I in zero-field and longitudinal-field experiment: Sµ ‖ Z→ PZ (t).



The muon spin evolution in a static field

Recall the Larmor equation,

dSµ(t)
dt = γµ Sµ(t)× Bloc(t).

Assuming Bloc(t) = Bloc, the solution is a precession motion:

Sµ(t) = S‖µ(0) u + S⊥µ (0)[cos(ωµt) v− sin(ωµt) w],
with ωµ = γµBloc.

The precession frequency only depends on Bloc, not on the angle between Sµ and Bloc !
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Transverse-field polarisation function

Per definition, Sµ ≡ Sµ(t = 0) ‖ X.
From the solution of the Larmor equation,

SX
µ (t) = Sµ

{(
BX

loc
Bloc

)2

+

[
1−

(
BX

loc
Bloc

)2
]

cos(ωµt)

}
,

SX
µ (t) = Sµ [ cos2 θ + sin2 θ cos(ωµt) ],

with B2
loc =

(
BX

loc
)2 +

(
BY

loc
)2 +

(
BZ

loc
)2, and ωµ = γµBloc.

Let Dv (Bloc) be the distribution of static fields probed by the muons,

Pstat
X (t) =

〈
SX
µ (t)
Sµ

〉
=
∫

[cos2 θ + sin2 θ cos(ωµt)]Dv (Bloc) d3Bloc.



Transverse-field polarisation function
Example: single field

Recall,
Pstat

X (t) =
∫

[cos2 θ + sin2 θ cos(ωµt)]Dv (Bloc) d3Bloc.

Assume all the muons to be submitted to Bloc = B0 ‖ Z, i.e.
θ = π/2,

Pstat
X (t) = cos(ω0t)

with ω0 = γµB0.



Transverse-field polarisation function
Large transverse field

Recall,
Pstat

X (t) =
∫

[cos2 θ + sin2 θ cos(ωµt)]Dv (Bloc) d3Bloc.

Suppose Bloc to be dominated by Bext, i.e. θ ≈ π/2,
Bloc ≈

∣∣BZ
loc
∣∣,

Pstat
X (t) =

∫
cos(ωµt)Dc (BZ

loc) dBZ
loc,

=
[∫

Dsh
c (x) cos(γµtx) dx

]
︸ ︷︷ ︸

characteristic function

cos(γµBextt).

The last line is obtained after the substitution BZ
loc = Bext + x .

Dsh
c (x) is assumed to be an even function, otherwise a phase shift is

present.



Transverse-field polarisation function
Example: typical distributions and associated polarisation functions

Gaussian distribution:

Dsh
c (B) =

1
√

2π∆G
exp
(
−B2

2∆2
G

)
Pstat

X (t) = exp
(
−γ2

µ∆2
Gt2

2

)
× cos(γµBextt)

Example: nuclear dipoles

Lorentzian distribution:

Dsh
c (B) =

1
π

∆L
∆2

L + B2

Pstat
X (t) = exp (−γµ∆Lt)

× cos(γµBextt)

Example: diluted magnetic
systems



Transverse-field polarisation function
Example: Mixed phase of superconductors

Type II superconductors submitted to a magnetic field:

Field (deviation) profile in the flux-line lattice
phase.

Associated field distribution.
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Zero- or longitudinal-field polarisation function

Per definition, Sµ ≡ Sµ(t = 0) ‖ Z.

From the solution of the Larmor equation,

SZ
µ (t) = Sµ

{(
BZ

loc
Bloc

)2

+

[
1−

(
BZ

loc
Bloc

)2
]

cos(ωµt)

}
,

SZ
µ (t) = Sµ [ cos2 θ + sin2 θ cos(ωµt) ],

with B2
loc =

(
BX

loc
)2 +

(
BY

loc
)2 +

(
BZ

loc
)2 and ωµ = γµBloc.

Let Dv (Bloc) be the distribution of static fields probed by the muons,

Pstat
Z (t) =

〈
SZ
µ (t)
Sµ

〉
=
∫

[cos2 θ + sin2 θ cos(ωµt)]Dv (Bloc) d3Bloc.



Zero-field polarisation function
Case of isotropic distribution

Recall
Pstat

Z (t) =
∫

[cos2 θ + sin2 θ cos(ωµt)]Dv (Bloc) d3Bloc.

Assume Dv (Bloc) d3Bloc = Dv (Bloc)B2
locdBloc sin θ dθ dϕ,

Pstat
Z (t) = 1

3 + 2
3

∫
4πDv (Bloc)B2

loc cos(ωµt) dBloc,

with ωµ = γµBloc.

Example: 4πDv (Bloc)B2
loc = δ(Bloc − B0)

ideal magnetic polycrystal

Pstat
Z (t) = 1

3 + 2
3 cos(γµB0t)



Zero-field polarisation function
Example: Maxwell-Boltzmann distribution for Bloc

For isotropic Gaussian distributed Bα with rms ∆G,

Dv (B) d3B =
(

1
√

2π∆G

)3

exp
(
−B2

2∆2
G

)
B2 dB sin θ dθ dϕ,

Dm(B) = 4πDv (B)B2,

Pstat
Z (t) = PKT(t) =

1
3

+
2
3

(1− γ2
µ∆2

Gt2) exp
(
−
γ2
µ∆2

Gt2

2

)
,

which is the so-called Kubo-Toyabe function.

Component distribution Modulus distribution Kubo-Toyabe function.
Minimum at t =

√
3/γµ∆G
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Effect of external field
Case of transverse Bext

If Bext is strong enough, recall

Pstat
X (t) =

[∫
Dsh

c (x) cos(γµtx) dx
]

︸ ︷︷ ︸
damping factor

cos(γµBextt)︸ ︷︷ ︸
oscillating factor

.

Trivial effect of Bext on oscillation frequency.

If width of distribution is non-negligible compared to Bext, resort
to general formula

Pstat
X (t) =

∫
[cos2 θ + sin2 θ cos(ωµt)]Dv (Bloc) d3Bloc.

Example: Gaussian field distribution
Towards the Kubo-Toyabe

function



Effect of external field
Case of longitudinal Bext

Recall,

Pstat
Z (t) =

∫
[cos2 θ + sin2 θ cos(ωµt)]Dv (B) d3B,

and the former isotropic Gaussian distribution.

Now the Z component of Dv (B) is shifted:

Dv (B) d3B =
(

1
√

2π∆G

)3

exp
(
−B2

X − B2
Y

2∆2
G

)
exp
(
−(BZ − Bext)2

2∆2
G

)
dBX dBY dBZ .

I at large field: muon spin
decoupling

I oscillations at γµBext
I field dependence serves to

ascertain the model
I sensitivity in the range

∆G/5 . Bext . 5∆G
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Origin of field at the muon site

I nuclei
I high concentration of magnetic moments
I quasi-static on τµ scale
I disordered and no correlation

I electrons
I high concentration of magnetic moments/structural order
−→ magnetically ordered phase
−→ paramagnetic phase (dynamical on τµ scale)

I low concentration of magnetic moments/structural disorder (spin-glass)
−→ frozen state
−→ paramagnetic state (dynamical on τµ scale)

muon life time τµ = 2.2 µs



The magnetic field at the muon site
Dipolar and Fermi contact fields

The dipolar field arising from localized spins Jj with Landé
factors g is

Bdip = − µ0

4π gµB
∑

j

[
− Jj

r 3
j

+ 3 (Jj · rj )rj

r 5
j

]
.

rj is the vector distance from the spin to the muon.

When a polarised electron density is present at the muon,
an additional contribution is present, the Fermi contact
field:

Bcon = − µ0

4π gµB
∑

j∈NN

HjJj .

Only the muon nearest neighbors (NN) usually contribute
to Bcon.
When both Bdip and Bcon contribute to Bloc (i.e. in metals) they generally have the
same order of magnitude.
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The magnetic field at the muon site
Reciprocal space

Bdip and Bcon linearly depending on Jj ,

Bloc = Bdip + Bcon = − µ0

4π
gµB

vc

∑
j

G jJj .

G j is the muon-spin j coupling tensor.

It is often a good idea to introduce the Fourier space
quantities:

Gq =
∑

j

G j exp(iq · rj ),

Jq = 1√nc

∑
j

Jj exp(−iq · j).

Then,

Bloc = − µ0

4π
gµB√ncvc

∑
q

exp(−iq · r0)GqJq.
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Zero-field polarisation function in magnets
Reminder:

I Jq = 1√nc

∑
j exp(−iq · j)Jj, Jj = 1√nc

∑
q exp(iq · j)Jq

I Ferromagnet: Jq=0 (Jq6=0 = 0)

I Antiferromagnet: Jq is finite only for q = ±k,
where k is the propagation wavevector of the magnetic
structure.

In a µSR experiment several millions muons are implanted:
they randomly localise in different unit cells of the crystal
structure.
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Zero-field polarisation function in magnets
Commensurate magnets

Recall,

Bloc = − µ0

4π
gµB√ncvc

∑
q=0
or

q=±k

exp(−iq · r0)GqJq.

An antiferromagnetic structure is commensurate if k = rQ where Q is a reciprocal lattice
vector and r is a rational number.
−→ exp(−iq · r0) takes a finite number of values, so Bloc does.
Obviously, this is also true for a ferromagnet in which q = k = 0.
−→ One (or more) muon spin precession frequency(ies).
µSR cannot directly tell whether a system is a ferro- or an antiferromagnet.



Zero-field polarisation function in magnets
Incommensurate magnets — spin density wave

Recall,

Bloc = − µ0

4π
gµB√ncvc

∑
q=±k

exp(−iq · r0)GqJq.

For an incommensurate magnetic structure, k = sQ where s is an irrational number.
−→ exp(−iq · r0) takes an infinite number of values,
−→ a continuous distribution of Bloc is expected.



Zero-field polarisation function in magnets
Spin density wave, simple case (1)

Recall,

Bloc = − µ0

4π
gµB√ncvc

∑
q=±k

exp(−iq · r0)GqJq.

Assume that the vectors Bloc remain collinear when q · r0 spans the interval [0, 2π[, then

Bloc = cosαBmax, with α ∈ [0, 2π[.



Zero-field polarisation function in magnets
Spin density wave, simple case (2)
Assume for simplicity Bmax ‖ X,

Dc(BX ) =
∫

δ(BX − Bloc,X ) dBloc,X =

∫ 2π

0
δ(BX − Bmax cosα) dα∫ 2π

0
dα

=
1
π

1√
B2

max − B2
X

,

Pstat
Z (t) =

∫ Bmax

−Bmax

Dc(BX ) cos(γµBX t) dBX = J0(γµBmaxt)

J0(x): zeroth-order Bessel function of the first kind.

I For x � 1,
J0(x)→ 1− x2/4

I For x →∞,
J0(x)→√

2/πx cos(x − π/4):
π/4 dephasing of
oscillations



Zero-field polarisation function in magnets
Spin density wave, general case

Bloc = cosαBmax + sinαBmin, with Bmax ⊥ Bmin.
The ellipse follows from the anisotropy of the dipolar interaction.

Dm(B) =
2
π

B√
B2

max − B2
√

B2 − B2
min

.

Dm(B) and PZ (t) in the case
Bmax = 2Bmin

and
Bmax,Bmin ⊥ Z

Real life case of MnSi
(helical spin density wave):

I Bmax and Bmin not ⊥ Z,
I four magnetic muon sites,
I four magnetic domains.
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Computation of field distributions
Uncorrelated moments, high-transverse field case

Consider magnetic impurities randomly distributed in a matrix of
non-magnetic sites. With the notations

I j for a site among a total of N,
I cimp for the occupation probability of an impurity (possibly cimp =

1),
I BZ ,j for the Z component of the field at the muon arising from

atom at site j,
I wj (BZ ,j ) for the distribution of field BZ ,j produced at the muon by

impurity at site j,

Dsh
c (BZ ) =

∫
· · ·
∫

δ

(
BZ −

N∑
j=1

BZ ,j

)
N∏

j=1

[(1− cimp)δ(BZ ,j ) + cimpwj (BZ ,j )] dBZ ,1 . . . dBZ ,N .

The distributions due to the impurities are assumed to be independent, hence
∏N

j=1.
We will take BZ ,j = −µ0

4π JZ ,j
giµB

r3
j

(3 cos2 θj − 1), i.e. the impurity dipole field.



Computation of field distributions
Uncorrelated moments, high-transverse field case, extreme dilution limit (cimp � 1)

Computation of the characteristic function

GTF(t) =
∫

exp(iγµBZ t)Dsh
c (BZ ) dBZ ,

for cimp � 1, i.e. the large dilution limit:

GTF(t) = exp(−γµ∆L|t|),

with ∆L = KL
µ0
4πρvolcimpgµB〈|m|〉, where ρvol is number of sites per unit volume, the

m’s are the eigenvalues of JZ and KL ≈ 2.5325 (case where each impurity has its own
quantisation axis).
From an inverse Fourier transform of GTF(t),

Dsh
c (BZ ) = 1

π

∆L

∆2
L + B2

Z

i.e. a Lorentzian or Cauchy distribution.



Computation of field distributions
Uncorrelated moments, high-transverse field case, cimp = 1

The characteristic function is

GTF(t) ≈ exp
(
−
γ2
µ∆2

Gt2

2

)
,

in the short-time limit, with ∆2
G = 1

3

(
µ0
4π

)2∑N
j=1

g2µ2
B

r6
j

〈
J2

Z
〉

(1− 3 cos2 θj )2.

Extremely fast convergence of the sum, due to the r−6
j factor.

Case of nuclear dipoles: the 2J + 1 Zeeman levels of JZ are equipopulated, hence〈
J2

Z
〉

= J(J + 1)/3. The initial 1/3 factor drops when all the nuclei have the same
quantisation axis.
From an inverse Fourier transform of GTF(t),

Dsh
c (BZ ) = 1√

2π∆G
exp
(
− B2

Z
2∆2

G

)
,

i.e. a Gaussian distribution.



Computation of field distributions
Uncorrelated moments, zero-field case, cimp � 1

Procedure similar to the high transverse field case:

Dv(B) =
∫
· · ·
∫

δ

(
B−

N∑
i=1

Bi

)
N∏

i=1

[(1− cimp)δ(Bi ) + cimpwi (Bi )] dB1 . . . dBN .

For cimp � 1,

GZF(t) = exp(−γµ∆Lt),

with ∆L = KL
µ0
4π ρvolcimpgµB〈|m|〉, where KL ≈ 4.5406.

Since GZF(t) only depends on t, Dv(B) is isotropic with

Dv(B) = Dv(B) =
1
π2

∆L(
∆2

L + B2
)2 .



Recap on the static polarisation functions

I Computation of Pstat
X ,Z (t) assuming a field distribution

I Nature of field at the muon site (dipole and Fermi contact)
I Derivation of Dc(BZ ) and Dv(B) for usual physical situations
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Introduction to the dynamical polarisation functions

The Larmor equation
dSµ(t)

dt = γµ Sµ(t)× Bloc(t),

is still valid.
However it is difficult to solve it when Bloc(t) is a stochastic variable.



Stochastic account of dynamics

We compute Pα(t) for two different models.

Hypothesis for both models:
Bloc(t) follows a stationary Gaussian-Markovian process, i.e.

I independent of origin of time
I Bαloc(t) belongs to a Gaussian distribution
I Bloc(t) evolves in jumps, with a hopping probability which does not depend on the

system state before the jump.
Doob’s theorem (1942):

〈Bαloc(t0)Bαloc(t0 + t)〉 = 〈(Bαloc)2〉 exp (−νc|t|)

where ν−1
c = τc is the field correlation time.
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The weak collision model (1)
Computation of PX (t)

Recall, for a single static field BZ
loc = B0,

Pstat
X (t) = cos(ω0t)

with ω0 = γµB0.

For BZ
loc(t), the phase at time t is

γµBZ
loc (t0) (t1 − t0) + ...+ γµBZ

loc (tn−1) (tn − tn−1) =
∫ t

0
γµBZ

loc(t ′)dt ′.

After averaging over the muon ensemble

PX (t) = Re
{〈

exp
[

i
∫ t

0
γµBZ

loc(t ′)dt ′
]〉}

.



The weak collision model (2)
Computation of PX (t)

Now, for a stationary Gaussian process,〈
exp
[

i
∫ t

0
γµδBZ

loc(t ′)dt ′
]〉

= exp
[
−
∫ t

0
dt ′
∫ t

0
γ2
µ

〈
δBZ

locδBZ
loc
(
t ′ − t ′′

)〉
dt ′′
]
,

where δBZ
loc(t ′) = BZ

loc(t ′)− 〈BZ
loc〉. Using Doob’s theorem and the relation∫ t

0
dt ′
∫ t

0
f (t ′ − t”)dt” = 2

∫ t

0
(t − τ)f (τ)dτ

where f (t) is an even function, we get

PX (t) = exp
{
−
γ2
µ∆2

G

ν2
c

[exp(−νct)− 1 + νct]
}

cos
(
γµ〈BZ

loc〉t
)
,

with ∆2
G = 〈

(
δBZ

loc
)2〉.

This is the so-called Abragam formula (Anderson, 1954).



The weak collision model (2)
Computation of PX (t)

Now, for a stationary Gaussian process,〈
exp
[

i
∫ t

0
γµδBZ

loc(t ′)dt ′
]〉

= exp
[
−
∫ t

0
dt ′
∫ t

0
γ2
µ

〈
δBZ

locδBZ
loc
(
t ′ − t ′′

)〉
dt ′′
]
,

where δBZ
loc(t ′) = BZ

loc(t ′)− 〈BZ
loc〉. Using Doob’s theorem and the relation∫ t

0
dt ′
∫ t

0
f (t ′ − t”)dt” = 2

∫ t

0
(t − τ)f (τ)dτ

where f (t) is an even function, we get

PX (t) = exp
{
−
γ2
µ∆2

G

ν2
c

[exp(−νct)− 1 + νct]
}

cos
(
γµ〈BZ

loc〉t
)
,

with ∆2
G = 〈

(
δBZ

loc
)2〉.

This is the so-called Abragam formula (Anderson, 1954).



The Abragam function

PX (t) = exp
{
−
γ2
µ∆2

G

ν2
c

[exp(−νct)− 1 + νct]
}

cos
(
γµ〈BZ

loc〉t
)

I For νc � γµ∆G,

PX (t) = exp
(
−γ2

µ∆2
Gt2/2

)
cos
(
γµ〈BZ

loc〉t
)
.

I For νc � γµ∆G,

PX (t) = exp (−λX t) cos
(
γµ〈BZ

loc〉t
)
,

with λX = γ2
µ∆2

G/νc = γ2
µ∆2

Gτc.

This is the so-called extreme motional
narrowing limit (NMR language). Examples of Abragam function



The strong collision model (1)
Computation of PZ (t)

I Let ` be the number of changes for Bloc(t) during the muon life time,

PZ (t) =
+∞∑
`=0

R`(t),

where R`(t) is the contribution to PZ (t) of muons which have experienced ` field
changes between 0 and t.

I Now,
R0(t) = Pstat

Z (t) exp(−νct),
since the probability for Bloc(t) to be unchanged between 0 and t is exp(−νct).



The strong collision model (2)
Computation of PZ (t)

I For ` = 1 field change and since the process is Gaussian-Markovian,

R1(t) =
〈∫ t

0

SZ
µ,j (t − t ′)

Sµ
exp[−νc(t − t ′)]νc

SZ
µ,i (t ′)
Sµ

exp(−νct ′)dt ′

〉
ij

= νc

∫ t

0
R0(t − t ′)R0(t ′)dt ′.

I Recursion relation:
R`+1(t) = νc

∫ t

0
R`(t − t ′)R0(t ′)dt ′.

I From the previous relation and the definition PZ (t) =
∑+∞

`=0 R`(t),

+∞∑
`=0

R`+1(t) = νc

∫ t

0
PZ (t − t ′)R0(t ′)dt ′ = PZ (t)− R0(t),

. . .



The strong collision model (3)
Computation of PZ (t)

which can be rewritten as the integral equation

PZ (t) = Pstat
Z (t) exp(−νct) + νc

∫ t

0
PZ (t − t ′)Pstat

Z (t ′) exp(−νct ′)dt ′,

or in terms of Laplace transforms (f (s) =
∫ +∞

0 f (t) exp(−st)dt),

PZ (s) = Pstat
Z (s + νc)

1− νcPstat
Z (s + νc) .

I Laplace transforms useful for studying analytical behaviour of PZ (t)
I For numerical purposes, solving numerically the integral equation is efficient



Dynamical polarisation functions
PZ (t) in zero external field for an isotropic Gaussian distribution
Recall

Pstat
Z (t) = PKT(t) =

1
3

+
2
3

(1− γ2
µ∆2

Gt2) exp
(
−
γ2
µ∆2

Gt2

2

)
,

I For νc � γµ∆G,

PZ (t) '
1
3

exp
(
−

2
3
νct
)

+
2
3

(1− γ2
µ∆2

Gt2) exp
(
−
γ2
µ∆2

Gt2

2

)
.

High sensitivity to slow dynamics.
I For νc & γµ∆G,

PZ (t) = exp
{
−2

γ2
µ∆2

G
ν2
c

[exp(−νct)− 1 + νct]
}
.

I For νc � γµ∆G,

PZ (t) = exp (−λZ t) ,

with
λZ = 2γ2

µ∆2
G/νc.

(extreme motional narrowing limit).

νc
γµ∆G

=



Dynamical polarisation functions
PZ (t) in a longitudinal field for an isotropic Gaussian distribution

I For νc � γµ∆G,

PZ (t) = exp (−λZ t) ,

with
λZ =

2γ2
µ∆2

Gνc

ν2
c + ω2

µ

(Redfield formula) and ωµ = γµBext.

Determination of νc from λZ (Bext)

νc
γµ∆G

=

PZ (t) for Bext = 3∆G.



Dynamical polarisation functions
The case of dilute spin glasses (1)

Recall

Dsh
c (BZ ) = 1

π

∆L

∆2
L + B2

Z
,

Transverse-field

Dv(B) = Dv(B) = 1
π2

∆L

(∆2
L + B2)2 ,

Zero-field

Muons far from any magnetic site have no chance to experience a large field
−→ Gaussian-Markovian hypothesis breaks.



Dynamical polarisation functions
The case of dilute spin glasses (2)

To cope with the breakdown, we compute the dynamical polarisation function for muons
at a given position and perform the spatial average in a second step.
We write

Pstat
Z (t) =

∫
PKT(t)ρ∆L (∆G)d∆G,

such that
Pstat

Z (t) = 1
3 + 2

3 (1− γµ∆Lt) exp (−γµ∆Lt) ,

is the static function for muons in a dilute magnetic system.
The function

ρ∆L (∆G) =
√

2
π

∆L

∆2
G

exp
(
− ∆2

L
2∆2

G

)
,

fulfils the requirement. Then

PZ (t) =
∫

PDKT(t)ρ∆L (∆G)d∆G.



Dynamical polarisation functions
The case of dilute spin glasses (3)

I For νc � γµ∆L,

PZ (t) '
1
3

exp
(
−

2
3
νct
)

+
2
3

(1− γµ∆Lt) exp (−γµ∆Lt) .

High sensitivity to slow dynamics.
I For νc & γµ∆L,

PZ (t) = exp

{
−

√
4γ2
µ∆2

L
ν2
c

[exp(−νct)− 1 + νct]

}
.

I For νc � γµ∆L,

PZ (t) = exp

(
−

√
4γ2
µ∆2

Lt
νc

)
.

νc
γµ∆L

=
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The polarisation functions from a quantum approach
A flavour for zero- and longitudinal-field experiments

Consider the Zeeman states of the muon spin (spin 1/2),

At thermodynamical equilibrium, the populations of the two states are equal since
~ωµ � kBT .
Indeed, for Bloc = 1 T, ~ωµ = 0.56 µeV ( = kBT for T = 6.5 mK).



The polarisation functions from a quantum approach
Derivation of PZ (t) (1)

Recall Stephen Blundell’s lecture,

PZ (t) = 2 Tr [ρsSZ
µSZ

µ (t)]

with
SZ
µ (t) = exp

(
iHt
~

)
SZ
µ exp

(
−iHt

~

)
where ρs is the density operator and H is the Hamiltonian for the muon-system ensemble.



The polarisation functions from a quantum approach
Derivation of PZ (t) (2)

After some computation,
PZ (t) ' exp[−ψZ (t)]

with
ψZ (t) = 2πγ2

µ

∫ t

0
(t − τ) cos (ωµτ)

[
ΦXX (τ) + ΦYY (τ)

]
dτ.

where Φαβ(τ) = 1
4π

[〈
δBαloc(τ)δBβloc

〉
+
〈
δBβlocδB

α
loc(τ)

〉]
is the field correlation function

and ωµ = γµBext.



The polarisation functions from a quantum approach
Derivation of PZ (t) (3)

Assuming Φαβ(τ) to decay rapidly on the µSR time t scale, we get ψZ (t) = λZ t with

λZ = πγ2
µ

[
ΦXX (ωµ) + ΦYY (ωµ)

]
.

Φαβ(ωµ) is the time Fourier transform of Φαβ(τ).

If Φαα(τ) = 1
2π 〈(δB

α
loc)2〉 exp (−νc|τ |)

I Bext = 0,
λZ = γ2

µ

(
〈(δBX

loc)2〉+ 〈(δBY
loc)2〉

)
/νc,

which can be identified to
λZ = 2γ2

µ∆2
G/νc.

I for any Bext, assuming Φαα(τ) independent of Bext,

λZ =
2γ2
µ∆2

Gνc

ν2
c + ω2

µ
.

This is again Redfield’s formula.
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The magnetic field at the muon site
The dipolar field arising from localized spins Jj with Landé factors g is

Bdip = − µ0

4π gµB
∑

j

[
− Jj

r 3
j

+ 3 (Jj · rj )rj

r 5
j

]
.

rj is the vector distance from the spin to the muon.

When a polarised electron density is present at the muon, an additional contribution is
present, the Fermi contact field:

Bcon = − µ0

4π gµB
∑

j∈NN

HjJj .

Only the muon nearest neighbors (NN) usually contribute to Bcon.
When both Bdip and Bcon contribute to Bloc (i.e. in metals) they generally have the
same order of magnitude.
Altogether

Bloc = Bcon + Bcon = − µ0

4π
gµB

vc

∑
j

G jJj .

G is the muon-spin j coupling tensor.



Spin-lattice relaxation rate λZ and spin-correlation function

From
λZ = πγ2

µ

[
ΦXX (ωµ) + ΦYY (ωµ)

]
,

introducing the space Fourier transform,

J(q) = 1√nc

∑
j

Jj exp(−iq · j),

we get

λZ = D2

∫ ∑
αβ

Aαβ(q)Λαβ(q, ωµ) d3q
(2π)3 .

Λαβ(q, ω) = 1
2
[〈
δJα(q, ω)δJβ(−q)

〉
+
〈
δJβ(−q)δJα(q, ω)

〉]
is the spin correlation tensor,

Aαβ(q) = GXα(q)GXβ(q) + GYα(q)GYβ(q)

is the muon-system coupling factor, and D =
(
µ0
4π

)2
γ2
µ(gµB)2/vc.



Spin-lattice relaxation rate λZ and spin-correlation function

Recall
λZ = D2

∫ ∑
αβ

Aαβ(q)Λαβ(q, ωµ) d3q
(2π)3 . (1)

λZ is an integral of the spin-correlation function taken near 0 energy (neV to µeV range)
over the Brillouin zone with a weighting factor depending on the muon site.
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Superposition of uncorrelated field distributions

The distribution resulting from independent distributions is the convolution product of
each of the distributions.

I High transverse field case
I The evaluation of Pstat

X (t) is trivial since its envelope is the inverse
Fourier transform of Dsh

c (BZ )
I Example: a dilute spin glass in a matrix of atoms with nuclear moments

Pstat
X (t) = exp

(
−γ2

µ∆2
Gt2

2

)
exp (−γµ∆Lt) cos(γµBextt)

I Zero-field case
I Trivial case of Gaussian distributions, since the convolution of Gaussians

is a Gaussian
I Much trickier situation in the other cases, since Pstat

Z (t) is not expressed
as an inverse Fourier transform

I Beware that the so-called Kubo golden formula is not of general validity



Presence of short-range correlations in the field distribution
Zero-field case (1)

I Occasionally, ZF spectra in quasi-static magnetic systems are
found similar to the Kubo-Toyabe function but with a
minimum less pronounced than predicted.

I Taking the average of Kubo-Toyabe polarisation functions
with Gaussian-distributed field widths,

PGbG(t) =
1

√
2π∆GbG

∫ ∞
−∞

PKT(∆, t) exp
(
−

(∆−∆0)2

2∆2
GbG

)
d∆,

provides the required spectral shape. This is the so-called
Gaussian-broadened-Gaussian function (Noakes and Kalvius,
1997).

PKT(t)

PGbG
Z (t) as a function of

R ≡ ∆GbG/∆0,
with ∆2

eff ≡ ∆2
0 + ∆2

GbG.



Presence of short-range correlations in the field distribution
Zero-field case (2)

I Monte Carlo simulations suggest the presence of short-range correlations to be responsible
for the weak dip (Noakes, 1999)

I The spectral shape close to the Kubo-Toyabe lineshape suggests the field distribution to be
close to a Gaussian

I Therefore, Dc(BZ ) ∝ exp
(
−B2

Z
2∆2

)
−→ Dc(BZ ) ∝ exp

[
−g
(BZ
δ

)]
with

g(x) = 1
2 x2 + 1

3 (η3x)3 + 1
4 (η4x)4.

Example of Yb2Ti2O7, a geometrically frustrated magnet with Tc ≈ 0.25 K.

Fits with the new distribution (full line) and the
Kubo-Toyabe function (dotted line)

New distribution compared to Gaussian
distribution

−→ Presence of short-range correlations in the magnetically ordered state (Yaouanc et al, 2013)
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The stretched exponential function
The function

PZ (t) = exp
[
−(λZ t)β

]
,

with 0 < β ≤ 1 is often used for the interpretation of µSR data. Sometimes, β > 1 is even
allowed (compressed exponential function).
It was introduced by Kohlrausch (1854), and can be understood as resulting from a
collection of exponential functions exp(−λt) with a distribution P(s, β) of relaxation
rates,

exp
[
−(λZ t)β

]
=
∫ ∞

0
P(s, β) exp(−sλZ t) ds,

where s ≡ λ/λZ is a dimensionless relaxation rate.



The stretched exponential function
I It is rarely physically justified except in the case of dilute

spin glasses, where β = 1/2 in the extreme motional
narrowing limit. Recall

PZ (t) = exp

(
−

√
4γ2
µ∆2

Lt
νc

)
.

I Sometimes a physically sound model approaches very
well the stretched exponential function.
Example of Nd2Sn2O7, a geometrically frustrated magnet
with TN = 0.91 K.

Full line: stretched exponential with β = 0.70 (3).
Dotted line: exponential.

A set of LF spectra fitted to the
dynamical Kubo-Toyabe model.

−→ Presence of quasi-static correlations in the paramagnetic phase
(Dalmas de Réotier et al, 2017)
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Summary

I Computation of PX ,Z (t) in a static Bloc, for different field distributions
I Origin and nature of the field at the muon site
I Derivation of the form of the field distribution in selected cases
I Computation of PX ,Z (t) when Bloc is dynamical
I Effect of spatial correlations
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Zero-field polarisation function in magnets
Commensurate magnets: examples

Ferromagnetic transition at TC = 74.5 K.
Powder sample. Antiferromagnetic transition at TN = 57 K.

Axial magnet, single crystal

µSR cannot directly tell whether a system is a ferro- or an antiferromagnet.



Computation of the field distribution width
Alternative approach, case of nuclear moments (1)

Start from

PX (t) =
1
2

Tr{ρsysσ
XσX (t)}

with

σX (t) = exp
(

i
Htot

~
t
)
σX exp

(
−i
Htot

~
t
)
,

and Htot = HZ,µ +HZ,sys +Hdip.
The field distribution arises from Hdip, truncated to (high field and secular approximations)

H̃dip,‖ =
∑

j

µ0
4π

γµγj~2

2r3
j

(1− 3 cos2 θj )σZ IZ
j .

Ij : nuclear spin at site j (distance rj and polar angle θj to the muon).



Computation of the field distribution width
Alternative approach, case of nuclear moments (2)

Expanding PX (t) up to second order in t, we recover the formula

∆2
G =

(
µ0
4π

)2∑
j

γ2
j ~

2

r6
j

Jj (Jj + 1)
3

(1− 3 cos2 θj )2,

already given.

Outlook:
I The method allows the electric field gradient acting on the nuclei to be accounted for in

the computation of ∆2
G.

I The above method is equivalent to the Van Vleck formula (1948)
∆2

G ∝ −
1

2γ2
µ~2 Tr{[H̃dip,‖, σ

X ]2},

I Similar method for computation of the ZF field width ∆2
G ∝ −

1
2γ2

µ~2 Tr{[Hdip,⊥, σ
Z ]2}.
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