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Foreword

> Polarisation function vs relaxation function
> Statistics, probability and stochastic processes theory

» Most methodologies apply to transverse and longitudinal
polarisation functions

» Background for the lecture is in the framework of magnetism
or sometimes the diffusion of a light interstitial in a crystal

> Reference: chapters 6 and 7 (marginally 5 and 10) of Muon
Spin Rotation, Relaxation and Resonance: Applications to
Condensed Matter, (Oxford University Press, Oxford, 2011)
by A. Yaouanc and P. Dalmas de Réotier
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Introduction: Larmor equation and polarisation functions
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The evolution of the muon spin S,,(t)

The Larmor equation

Basic principle of mechanics:

Time derivative of angular momentum is equal to the sum of the torques:

dnS,.(t)
dt

= mﬂ(t) X Bloc(t).
Since

m,, = 7,hS,,
by definition of the gyromagnetic ratio, we have

ds,(t) _
dt

Ve Sp(t) X Bioc(t)-

Yu = 851.6 Mrads~1 T—1.
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Basics of motion properties deriving from the Larmor

equation
From ds,(t)
t
Bt — 5 8(0) % Bt
we deduce:
» Bl g (1) =0
S.(t) is a constant of the motion, i.e. S,(t) = S.(0)
> Bul® By (t) =0

ds,(t)
th|s implies —4-

is perpendicular to Bioc(t).

irig”



The transverse and longitudinal polarisation functions

> The polarisation function P.(t) is the evolution of the projection of the muon
ensemble polarisation along axis «a:

Pa(t) = <5”’;u(t)>.

> S, =S,(t=0): initial muon beam polarisation

Transverse-field Longitudinal- or zero-field
geometry geometry

Convention for the axes:
Bext is always parallel to Z.

> in transverse field experiment: S, || X — Px(t)or Py(t).

> in zero-field and longitudinal-field experiment: S,, || Z — Pz(t). irig”



The muon spin evolution in a static field

Recall the Larmor equation,

ds, (t)
dt

= Yu Sﬂ(t) X Bloc(t)'

Assuming Bioc(t) = Bioc, the solution is a precession motion:

S,.(t) = S!(0) u + S (0)[cos(w,.t) v — sin(w, t) w],

with w, = v, Bioc.

The precession frequency only depends on Bioc, not on the angle between S,, and Bio !
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Static polarisation functions from a field distribution approach
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Static polarisation functions from a field distribution approach
Transverse-field polarisation function
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Transverse-field polarisation function

Per definition, S, =S,.(t =0) || X
From the solution of the Larmor equation,

BX.\’ BX.\°
SX() = su{<8100> + 1—<B:OC) cos(wyt) ¢,

Sl)f(t) = S,[ cos’0 + sin® 0 cos(wyt) ],

with B2, = (BY.)" + (Bl.)” + (BE.)’. and w, = 7, Bice. X
Let D,(Bioc) be the distribution of static fields probed by the muons,

X(
Psit(t) = <55 > /[cos 0 + sin” 0 cos(w,. t)] Dy (Bioc) d*Bioe.
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Transverse-field polarisation function

Example: single field

Recall,
P (t) = /[cos2 0 + sin® 0 cos(w,. )] Dy (Bioc) d*Bioc.

Assume all the muons to be submitted to Bioc = Bg || Z, i.e.
0=m/2,
P2 (t) = cos(wot)

with wo = v, Bo.

Polarisation function Py (1)
o
>
T
Il

-1.0 - B
1

I I I I I I
00 05 10 15 20 25 30
Time ¢ (arb. unit.) . o 30
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Transverse-field polarisation function
Large transverse field

Recall,

P () = /[cos2 6 + sin® 6 cos(w,, )] Dy (Bioc ) d*Bioc.

Suppose Bioc to be dominated by Bext, i.e. 6 = /2,
Bioc = | Bf

P)s(tat ( t)

/ cos(w, t)De(Bf ) dBi.,

{/ DE™(x) cos(7,. tx) dx | cos(7, Bextt).-

characteristic function

sh
The last line is obtained after the substitution BZ = Bext + x. D:'(B2) D (B2)
loc
D2h(x) is assumed to be an even function, otherwise a phase shift is

present.
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Transverse-field polarisation function

Example: typical distributions and associated polarisation functions

Gaussian distribution:

T T 1 _ B2 T T T
04 - b sh 10 |- B
~ D3*(B) = ———— exp < =
V21 A 2102, ) %
i 03 F b G G S oosf 1
X S
Bl B _’72 A2 12 S o} 7
5 P)s(tat(t) = exp ‘u‘fc‘ :5
3ol 1 g sl 1
@2 (3
z &
00 [- R X cos( Y Bextt) £ “1o b Be =206 1
| | , | | T T T T
4 ) 0 2 4 00 05 10 15 20 25 30
Field 5% (&) Example: nuclear dipoles Time ¢ (o))
Lorentzian distribution:
T T T T T
ES 0.30 | 1 AL -3 10 4
P sh _ e
2 ot 1 DZ(B)= A LB < osk ]
;E; 020 F E ™AL+ 2
8ot E stat 5 oof ]
5 ° P (t) = exp (—vuALt) 5
8 oot 1 8 sk B
2 oot ] X cos(yu Bextt) 5
0.00 E & of” B =208y
. | | | \ ISP T T T
-4 -2 0 2 4 Example: diluted magnetic 00 05 1.0 1S 20 25 30
Field BZ (A,)

Time £ (A
systems me ¢ (™)

irig’



Transverse-field polarisation function

Example: Mixed phase of superconductors

Type Il superconductors submitted to a magnetic field:

T T T T T
40 4
230k ]
o 2
c
g Sk B
~ >
3 £
o 3
E aloF —
ok 1
M|

Lo b v b by
—005 000 005 010 015
Field deviation (¢o/A2)

Associated field distribution.
Field (deviation) profile in the flux-line lattice

phase.
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Static polarisation functions from a field distribution approach

Longitudinal-field polarisation function
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Zero- or longitudinal-field polarisation function

Per definition, S, =S,.(t=0) || Z

From the solution of the Larmor equation,

Si(t) = sﬂ{@fﬁz) + l1— (gi) 1 cos(wut)},

Si(t) = Su[ cos’6 + sin” 6 cos(wyt) ],

with B2, = (BY.)* + (BYe)’ + (BZ.)” and wy = 7, Bioe.

Let Dy (Bioc) be the distribution of static fields probed by the muons,

Py (t) = <5; t)> /[cos 6 + sin® 6 cos(w,, t)] Dy (Bioc ) d*Bioc.
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Zero-field polarisation function

Case of isotropic distribution

Recall

P (t) = /[cos2 0 + sin” 6 cos(w,, )] Dy (Bioc) d*Bioc.

Assume D, (Bioc) d®Bloc = DV(BloC)BfOCdBloc sin 6 d6 de,

. 1 2
P;tat(t) = § —+ g /47TD\/(BIOC)31206 COS((JJMt) dBlOC’

with w, = Y, Bioe.

o
T
L

Example: 47D, (Bioc)B2. = §(Bioc — Bo)
ideal magnetic polycrystal

o
b3
T
L

Polarisation function P, (1)
=4
S
T
.

sta 1,2
Py (t) = 3 + 3 cos(yuBot)

T TP PO T
00 05 10 L5 20 25 30
Time ¢ (arb. unit.)
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Zero-field polarisation function

Example: Maxwell-Boltzmann distribution for Bjoc

For isotropic Gaussian distributed B with rms Ag,

3
1 -B?
D,B)d®B=| —— | exp| —
(B) (\/27@@) P (2Ag

) B2 dBsin0df dep,

Dm(B) = 47D, (B)B?,

which is the so-called Kubo-Toyabe function.

(8%) (A3)

Distribution D"

T T
04

03 |

02

0.1

00

2 N2 42
1 2 TuBGt
stat _ _ 2 A2 .2 r=G
Pz (t)—PKT(t)—EJrg(l*’yﬂAGt ) exp =)
T T T T T
06 | E ~10f
—g:o.sf ] i; 08 |
T 04f E 8
g 5 06
S 03f E 5
£ Tg 04 -
2 02f E 2
2 0f 4 § 02
00 f T o0
| | | . | | L L .
0 1 2 3 4 0 2 4 6

Field BZ (Aq)
Component distribution

Field B (Ac)

Modulus distribution

Time 7 ((3.46)™)

Kubo-Toyabe function.

Minimum at t = /3/v,A¢q
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Static polarisation functions from a field distribution approach

Effect of external field
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Effect of external field

Case of transverse By

If Bext is strong enough, recall

Y () =

/ DM (x) cos(yutx) dx | cos(yuBextt) -

damping factor oscillating factor

Trivial effect of Bext on oscillation frequency.

T T
= 1.0 -
If width of distribution is non-negligible compared to Bext, resort 7:5 os b ]

to general formula g full integration
g R T highfield formula §
5 st E

Pt (t) = [cos? 6 + sin? 0 cos(w. t)] Dy (Bioc) d°Bloe. 5

& oF By =24 |

R T SR

Example: Gaussian field distribution Time ¢ ((y4a) ')
Towards the Kubo-Toyabe

function
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Effect of external field

Case of longitudinal Bexy

Recall,

PSRt () = /[cos2 6 + sin? 0 cos(w, t)] Dy (B) d°B,

and the former isotropic Gaussian distribution.

Now the Z component of D,(B) is shifted:

—32—82 7B*Bex2
X v)exp<(z )

3
3 = 71 €eX|
D,(B)d B_(\/EAG) p<

_ 1o >
08t

s

3 06 >
g

El

5 04 >
3

-2

g 02

S

[ >

00 g
L | | | |

Time ¢ ((Ac) ™)

2 2
202, 202,

at large field: muon spin
decoupling

oscillations at 7, Bext

field dependence serves to
ascertain the model

sensitivity in the range
Ag /5 S Bext S5A¢

(1= o)

> dBxdBydBy.

L
0.01

! L
0.1 1 10
External field By (Ag)

"
100
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Computation of the field distribution
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Computation of the field distribution
Nature of the field at the muon site
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Origin of field at the muon site

» nuclei

» high concentration of magnetic moments
» quasi-static on 7, scale
» disordered and no correlation

» electrons

» high concentration of magnetic moments/structural order
— magnetically ordered phase
— paramagnetic phase (dynamical on 7, scale)
» low concentration of magnetic moments/structural disorder (spin-glass)
— frozen state
—> paramagnetic state (dynamical on 7, scale)

muon life time 7, = 2.2 us
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The magnetic field at the muon site

Dipolar and Fermi contact fields

The dipolar field arising from localized spins J; with Landé
factors g is

1N
Bdlp = _7g,u/ Z |: 3 +3szJJ:| .

rj is the vector distance from the spin to the muon.

When a polarised electron density is present at the muon,
an additional contribution is present, the Fermi contact
field: i

0

Bcon = *EgHB Z HjJ_,‘.
JENN

Only the muon nearest neighbors (NN) usually contribute
to Beon.

When both Bgip, and Bgon contribute to Bioe (i.e. in metals) they generally have the

same order of magnitude.
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The magnetic field at the muon site

Dipolar and Fermi contact fields

The dipolar field arising from localized spins J; with Landé or
factors g is o e
_ i)y ) /{i,é ?
Bdlp—_ig,u/ Z |: 3 +3 rﬁ :| . . o, .

rj is the vector distance from the spin to the muon.

When a polarised electron density is present at the muon,
an additional contribution is present, the Fermi contact
field:

_ o i
Bcon - 4ﬂ_g/“LB Z 'LIJJJ

JENN
Only the muon nearest neighbors (NN) usually contribute
to Beon.

When both Bgip, and Bgon contribute to Bioe (i.e. in metals) they generally have the
same order of magnitude.
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The magnetic field at the muon site

Dipolar and Fermi contact fields

The dipolar field arising from localized spins J; with Landé
factors g is

i - )X
Bdlp = _7g,u/ Z |: 3 +3szJJ:| .

rj is the vector distance from the spin to the muon.

When a polarised electron density is present at the muon,
an additional contribution is present, the Fermi contact
field: i

0

Bcon = *EgHB Z HjJ_,‘.
JENN

Only the muon nearest neighbors (NN) usually contribute
to Beon.

When both Bgip, and Beon contribute to Bioe (i.e. in metals) they generally have the

same order of magnitude.

. .

. .

. +
W

o XI10

. .

. .

ion
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The magnetic field at the muon site

Reciprocal space
Baip and Beon linearly depending on J;,

Bloc = Bdip + Bcon = _&gﬂ Z GJ'JJ‘.
J

4 v,

G; is the muon-spin j coupling tensor.

It is often a good idea to introduce the Fourier space

quantities:
Ga = Y Gjexp(iq-n),
J .
Jo = \/%Zhexp(—iqd)- oL
J
Then,
Bioc = *%%Zexp(fiq-ro)Gqu.

q
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Origin of field at the muon site

» nuclei

» high concentration of magnetic moments
» quasi-static on 7, scale
» disordered and no correlation

» electrons

» high concentration of magnetic moments/structural order
— magnetically ordered phase
— paramagnetic phase (dynamical on 7, scale)
» low concentration of magnetic moments/structural disorder (spin-glass)
— frozen state
—> paramagnetic state (dynamical on 7, scale)

muon life time 7, = 2.2 us
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Computation of the field distribution

Zero-field polarisation function in magnets
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Zero-field polarisation function in magnets

Reminder:

= e Sy ia i = 5 eelia- il
> Ferromagnet: Jq—o (Jqz0 = 0)

> Antiferromagnet: Jq is finite only for q = £k,
where k is the propagation wavevector of the magnetic
structure.

In a uSR experiment several millions muons are implanted:
they randomly localise in different unit cells of the crystal
structure.




Zero-field polarisation function in magnets

Reminder:

= e Sy ia i = 5 eelia- il
> Ferromagnet: Jq—o (Jqz0 = 0)

> Antiferromagnet: Jq is finite only for q = £k,
where k is the propagation wavevector of the magnetic

structure. O A 2 I A B
OHB ion

In a uSR experiment several millions muons are implanted:
they randomly localise in different unit cells of the crystal . . R .
structure.
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Zero-field polarisation function in magnets

Reminder:
> = Y epl-ia i 4 = o X eplia- il
> Ferromagnet: Jq—o (Jqz0 = 0)

> Antiferromagnet: Jq is finite only for q = £k,

where k is the propagation wavevector of the magnetic vheo t 4
structure. I A R A A
T e
L] 9 . L]
In a uSR experiment several millions muons are implanted: o
they randomly localise in different unit cells of the crystal . . R .
structure.
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Zero-field polarisation function in magnets

Reminder:

= e Sy ia i = 5 eelia- il
> Ferromagnet: Jq—o (Jqz0 = 0)

> Antiferromagnet: Jq is finite only for q = £k,
where k is the propagation wavevector of the magnetic
structure.

In a uSR experiment several millions muons are implanted:
they randomly localise in different unit cells of the crystal
structure.




Zero-field polarisation function in magnets

Commensurate magnets

Recall,

Mo EHUB :
Bioc = T an Ve Z eXp(_’q : I'O)Gqu.

or
q==+k
An antiferromagnetic structure is commensurate if k = rQ where Q is a reciprocal lattice
vector and r is a rational number.
— exp(—iq - ro) takes a finite number of values, so Bioc does.
Obviously, this is also true for a ferromagnet in which g = k = 0.
— One (or more) muon spin precession frequency(ies).

1SR cannot directly tell whether a system is a ferro- or an antiferromagnet.
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Zero-field polarisation function in magnets

Incommensurate magnets — spin density wave

Recall,

_ Mo gum e
Bioc = 4r ove Zikexp( iq-r0)Gqlg.
a=

For an incommensurate magnetic structure, k = sQ where s is an irrational number.
— exp(—iq - ro) takes an infinite number of values,

— a continuous distribution of Bi,. is expected.
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Zero-field polarisation function in magnets

Spin density wave, simple case (1)

Recall,

Mo EHUB .
Bioc = “ar o Zi:kexp(—IQ-ro)Gqu.
o

Assume that the vectors Bio. remain collinear when q - ro spans the interval [0, 27|, then

Bioc = cosaBmax, with a € [0,2n].
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Zero-field polarisation function in magnets

Spin density wave, simple case (2)
Assume for simplicity Bmax || X,

DC(BX) = /6(BX - B100,X)dBloc,X = L0

Bmax
Pya() = /

2m
8(Bx —

Bmax cos o) da

1 1

27
/ da
0

Bmax

Jo(x): zeroth-order Bessel function of the first kind.

Field distribution Dy(By )

I I
-15 -1.0 05 00 05 10 15

Magnetic field Bx (Brax)

> For x < 1,
Jo(x) = 1—x2/4

» For x — oo,
Jo(X) —
\/2/7x cos(x — w/4):
/4 dephasing of
oscillations

(Y]

stat
t

Polarisation function P;

™ /B - B

D.(Bx) cos(vuBxt) dBx = Jo(vuBmaxt)

0.5

00

I I ! L

.
0 10 20 30 40
Time £ ((%Bmax) ')

50




Zero-field polarisation function in magnets

Spin density wave, general case

Bloc = €05 & Bmax + Sin & Bunin, With Bmasx L Buin. /V\
. N . . . Bunin| Byoc
The ellipse follows from the anisotropy of the dipolar interaction.

Binax

Dm(B) = sy 2 2

\/Bmax - B \/B rmn
sk T E - 10F

S 1 m(B) and Pz(t) in the case N
_2 Bmax = 2Bmin é osE
2 3 E and 3 oF

% ’F E BmaXa Bmin 1z %
g1f 1 g osf

o

L L L L L L

00 02 04 06 08 1.0
Magnetic field B (Bma) Tlmez (Vu max) )

r T : Real life case of MnSi

e
3
T
I
°
T

0]

(helical spin density wave):

S oo 1 %oosh
: [ 1 » Buax and By not L Z, 5 o6l
S 0.06 5
£ oul i » four magnetic muon sites, 2 o4l
2 - S
I . - © [
3 oo 1 > four magnetic domains. g 02
= S

a 00

0.00 A -
1 L L I |
50 100 150 200 250 0 0 0 2 0.4 06 0 8 l.D
Magnetic field B (mT) Time 1 (us)
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Computation of the field distribution

Uncorrelated moments
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Computation of field distributions

Uncorrelated moments, high-transverse field case

Consider magnetic impurities randomly distributed in a matrix of
non-magnetic sites. With the notations

» j for a site among a total of N, ° °

.
magnetic

» Cimp for the occupation probability of an impurity (possibly cimp = .
1),

» By ; for the Z component of the field at the muon arising from
atom at site j,

> w;j(Bz,) for the distribution of field Bz ; produced at the muon by . . . .
impurity at site j,

N N
DM (Bz) = / : -/5 Bz =Y Bz | [JI(1 = cimp)d(Bz) + cimpw;(Bz,)] dBz1 ... dBz .
j=1

j=1

The distributions due to the impurities are assumed to be independent, hence szl.

We will take Bz j = —i‘—ngJg"r’;B (3cos?0; — 1), i.e. the impurity dipole field.
J
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Computation of field distributions

Uncorrelated moments, high-transverse field case, extreme dilution limit (cimp < 1)

Computation of the characteristic function
Gre(t) = / exp(in, Bzt) D2 (Bz) dBz,
for cimp < 1, i.e. the large dilution limit:

Grr(t) = exp(—y.ALlt]),

with Ar, = K22 pvol Cimpg& 1B (|M|), where pyo1 is number of sites per unit volume, the
m’s are the eigenvalues of Jz and Ky, &~ 2.5325 (case where each impurity has its own
quantisation axis).

From an inverse Fourier transform of Grr(t),

1 Ay

DMBz)= = —o—ms
m A2 + B2

i.e. a Lorentzian or Cauchy distribution.
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Computation of field distributions

Uncorrelated moments, high-transverse field case, cimp = 1

The characteristic function is

2A2 t2
GTF(t) = exp <_7u 2G s

2 2
in the short-time limit, with A% = % (%?)2 ZJN:1 gng <J§> (1 —3cos? ;)2
J

Extremely fast convergence of the sum, due to the rj_6 factor.

Case of nuclear dipoles: the 2J + 1 Zeeman levels of J7 are equipopulated, hence
<J§> = J(J+1)/3. The initial 1/3 factor drops when all the nuclei have the same
quantisation axis.

From an inverse Fourier transform of Grg(t),

D(B2) = ——— exp (~ L2,
\/27TAG 2AG

i.e. a Gaussian distribution.
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Computation of field distributions

Uncorrelated moments, zero-field case, cimp < 1

Procedure similar to the high transverse field case:

N N
DV(B):/---/J szB,- H[(lfcimp)é(B,-)+cimpw,-(B,-)]dBl.‘.dBN.
i=1 i=1

For cimp < 1,
GZF(t) = exp(f'yHALt),

with A, = KL 52 pyorcimpgus (| m|), where Ki, ~ 4.5406.
Since Ggzp(t) only depends on t, Dy(B) is isotropic with

_ 1 Ar,
PO ey
L
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Recap on the static polarisation functions

> Computation of P¥%(t) assuming a field distribution

> Nature of field at the muon site (dipole and Fermi contact)

> Derivation of D.(Bz) and D, (B) for usual physical situations
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Dynamical polarisation functions
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Introduction to the dynamical polarisation functions

The Larmor equation
ds,.(1)
dt

= Y4 Sp(t) X Bioc(t),
is still valid.

However it is difficult to solve it when Bioc(t) is a stochastic variable.
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Stochastic account of dynamics

We compute P, (t) for two different models.

Hypothesis for both models:
Bioc(t) follows a stationary Gaussian-Markovian process, i.e.

> independent of origin of time
> Bii.(t) belongs to a Gaussian distribution

> Bioc(t) evolves in jumps, with a hopping probability which does not depend on the
system state before the jump.

Doob'’s theorem (1942):
(Bioe(t0) Bise(to + 1)) = ((Bite)®) exp (—relt])

where v; ! = 7. is the field correlation time.
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Dynamical polarisation functions
Stochastic approach: the weak and strong collision models
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The weak collision model (1)
Computation of Px(t)

Recall, for a single static field BZ, = By,
P (t) = cos(wot)
with wo = v, Bo.

For BZ.(t), the phase at time t is

t
YuBioe (t0) (51 = t0) + . + 7 Biloe (Ea-1) (t0 — ta—1) = / VuBloe(t))dt'.
0

After averaging over the muon ensemble

Px(t) = Re {<exp {i /t'yuBf)C(t')dt’} >} .
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The weak collision model (2)
Computation of Px(t)

Now, for a stationary Gaussian process,

t t t
<exp {// WﬂéBfm(t’)dt'} > = exp [/ dt'/ fy,i <6Bfm5BﬁC (t’ - t”)>dt" ,
0 0 0

where §Bf (t') = BE.(t') — (BE.). Using Doob’s theorem and the relation

/tdt’/t f(t —t")dt" = 2/t(t —7)f(r)dr

where f(t) is an even function, we get
2A2
Px(t) = exp {’y” S [exp(—vet) — 1+ vet] b cos (mL(Bf)C)t) ,

v?

with A% = ((6BZ.)%).

This is the so-called Abragam formula (Anderson, 1954).
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The weak collision model (2)
Computation of Px(t)

Now, for a stationary Gaussian process,

t t t
<exp [// 'y#éBfm(t’)dt'} > = exp [/ dt'/ fyi <58£,C581200 (t’ - t”)>dt" ,
0 0 0

where §Bf (t') = BE.(t') — (BE.). Using Doob’s theorem and the relation

/tdt’/t f(t —t")dt" = 2/t(t —7)f(r)dr

where f(t) is an even function, we get
2A2
Px(t) = exp {’y” S [exp(—vet) — 1+ vet] b cos (7#<Bf)c)t) ,

v?

with A% = ((6BZ.)%).

This is the so-called Abragam formula (Anderson, 1954).
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The Abragam function

2A2~
Px(t) = exp {_Myzc [exp(—vet) — 1+ l/ct]} cos (’yu(Bf)C)t)

c

> FOFI/C <<’YMAG, 10_|'_‘"1"“|""\"'w""\_
272 .2 z < -
Px(t) = exp (fWMAGt /2) cos ('yu(Bloc>t) . < oost ]
> For ve > v.Ac, é 00 ]
Px(t) = exp (—Axt) cos (*yMBf)C)t) , g 05| .
& -
with Ax = ’YZAQG/VC = ’YiAQGTc- o L . | | | | L
o 1 2 3 4 5
This is the so-called extreme motional Time 1 (us)
narrowing limit (NMR language). Examples of Abragam function
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The strong collision model (1)
Computation of Pz(t)

> Let ¢ be the number of changes for Bioc(t) during the muon life time,

Pz(t) = R(t),
£=0

where Ry(t) is the contribution to Pz(t) of muons which have experienced ¢ field
changes between 0 and t.

> Now,
Ro(t) = P (t) exp(—vct),

since the probability for Bioc(t) to be unchanged between 0 and t is exp(—vct).
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The strong collision model (2)
Computation of Pz(t)

» For ¢ =1 field change and since the process is Gaussian-Markovian,

m

tGZ (¢ — ¢/ SZ (¢
Ri(t) = / St =) exp[—ve(t — t')]VCM exp(—v.t')dt
0 Su S i
t
= uc/ Ro(t — t')Ro(t')dt’.
0

» Recursion relation: .
Rea(t) = yc/ Re(t — t')Ro(t')dt’.
0

> From the previous relation and the definition Pz(t) = Zg Re(t),

S R (t) = yc/t Po(t — t)Ro(t')dt = Py(t) — Ro(t),
£=0 0



The strong collision model (3)
Computation of Pz(t)

which can be rewritten as the integral equation
t
Pz(t) = P53 (t) exp(—vet) + ve / Pz(t — t')P5*(t') exp(—vet')dt,
Jo

or in terms of Laplace transforms (f(s) = foﬂo f(t) exp(—st)dt),

P52 (s + 1)

P = .
2(s) 1 — v Py (s + ve)

> Laplace transforms useful for studying analytical behaviour of Pz(t)

» For numerical purposes, solving numerically the integral equation is efficient
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Dynamical polarisation functions

Pz(t) in zero external field for an isotropic Gaussian distribution
Recall

N 1 2 ’72A2 t2
P5t(t) = Pir(t) = 3+30- VoA ) exp (—“ 2G ,

> For ve € vuAg,

1 2 2 VALY
Pz(t) ~ 3 exp <—§Vct) + g(l —’yiAétZ) exp <_”2G .

High sensitivity to slow dynamics.

> For ve 2 vulAg, _or
2 A2 T osr
A s
Pz(t) = exp {—27“ 2G [exp(—vet) — 1+ I/Ct]} . S o6t
1% 2
¢ S 04
3
> For ve > vuAg, S 021
o
P2(t) (=Azt) Toop, 7 s
= —_ PR I S PRI
z &P 25 0 2 4 6 8
Time 1 (WAc)™)

with
Az = 2’}/5Aé/llc,

(extreme motional narrowing limit).



Dynamical polarisation functions

Pz(t) in a longitudinal field for an isotropic Gaussian distribution

> For ve > v, Aq,
Pz(t) = exp (—=Azt),

with ) 2
27, AG Ve

Az =— 2

vé + wp

(Redfield formula) and w, = v, Bext.

A‘Z (Bex()/kz (0)

0 Bip=vdy Bext

Determination of vc from Az(Bext)

Polarisation function P, (1)

0.8

0.6

0.4

0.2

0.0

Time 7 ((,A6)™)
Pz(t) for Bext = 3Aq.
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Dynamical polarisation functions

The case of dilute spin glasses (1)

Recall

D:"(Bz) =

Distribution DS"(B%) (A7!)

0.30
0.25
0.20
0.15
0.10
0.05
0.00

1A
TA2 1B

T T T

Field B (A,)

Transverse-field

D,(B) = Dy(B) =

Distribution Dn(B) (A7')

0.30
0.25
0.20
0.15
0.10
0.05
0.00

1A
™ (87 + B2

0

2 4 6 8 10
Field B (A,)

Zero-field

Muons far from any magnetic site have no chance to experience a large field

— Gaussian-Markovian hypothesis breaks.
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Dynamical polarisation functions
The case of dilute spin glasses (2)

To cope with the breakdown, we compute the dynamical polarisation function for muons
at a given position and perform the spatial average in a second step.
We write

P (1) = / Pir(t)par (Bc)dAc,

such that 1 2
Pt (1) = 3 + g(1 — yulArnt)exp (—y.ALt),

is the static function for muons in a dilute magnetic system.

The function : T T
06 B

2 A A? 05 E
pAL(AG) = \/;Azz exp (2AI%;) s L 04 F E

03 F b

ALps,(Ac)

fulfils the requirement. Then 02 ¢ E
0.1 | -

Po(t) = [ Porer(®hpm, (Acitc b




Dynamical polarisation functions
The case of dilute spin glasses (3)

> For ve K v Ar,

1
Pz(t) ~ = exp

3

High sensitivity to slow dynamics.

> For ve 2 vuAL,

442 A
Pz(t) = exp —\/52
c

> For ve > vuAr,

Pz(t) = exp

2
L

[exp(—vct) — 1+ vet]

4'yiAi t

Polarisation function P (1)

2 2
(—guct) + 5(1 — YuArLt)exp (—yuALt).

08 |-

06 |-

04 -

02 |

00 -

Time 7 ((v,A0)™")
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Outline

Dynamical polarisation functions

Quantum approach
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The polarisation functions from a quantum approach

A flavour for zero- and longitudinal-field experiments

Consider the Zeeman states of the muon spin (spin 1/2),

Longitudinal- or zero-field

e TTTT...TTTT —_— T seomeny
ho, e
— —_— L
t=0 thermodynamical
equilibrium

At thermodynamical equilibrium, the populations of the two states are equal since
hch < ksT.
Indeed, for Bioc = 1 T, fw, = 0.56 ueV ( = kg T for T = 6.5 mK).
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The polarisation functions from a quantum approach
Derivation of Pz(t) (1)

Recall Stephen Blundell's lecture,
P2(t) = 2 Tr [p.SZSE(t)]

with " 5y
S/ (t) = exp (I%) S/ exp (—i%)

where ps is the density operator and H is the Hamiltonian for the muon-system ensemble.
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The polarisation functions from a quantum approach
Derivation of Pz(t) (2)

After some computation,
Pz(t) =~ exp[—1z(t)]
with

Pz(t) = 27r'yi/ (t — 1) cos (wuT) [q)XX(T) + CDYY(T)] dr.

where ®*7(7) = L [<6Bﬁ‘,c(7)68ﬁic> + <68£C68ﬁ‘)0(7)>] is the field correlation function

and wy = YuBexs.
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The polarisation functions from a quantum approach
Derivation of Pz(t) (3)

Assuming ®*?(7) to decay rapidly on the uSR time t scale, we get 1z(t) = Azt with
Az = 7T’7;2L [CDXX(WH) + ¢YY(Wu)} .

®°#(w,,) is the time Fourier transform of &% (7).

If ©2(7) = L ((6B.)?) exp (—ve|7])

» Bext = 0:
>\Z - '7;2; (((581);6)2) + <(681Yoc)2>) /Vm

which can be identified to
Az = 2’yﬁAé/VC.

> for any Bext, assuming ®“%(7) independent of Boxt,

2%2‘ A2,

Az = .
V2 + w?

This is again Redfield's formula.
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Outline

Dynamical polarisation functions

Spin correlation functions
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The magnetic field at the muon site

The dipolar field arising from localized spins J; with Landé factors g is
Ho Ji L Uiw)y
Baip = —— —= B
dip 4ﬂguBZ [ rj3 +3 rj5
J

r; is the vector distance from the spin to the muon.

When a polarised electron density is present at the muon, an additional contribution is
present, the Fermi contact field:

— _ ko .
Beon = 47’l'gMB Z ’L’JJJ

JENN

Only the muon nearest neighbors (NN) usually contribute to Beon.

When both Bgip, and Bgon contribute to B (i.e. in metals) they generally have the
same order of magnitude.

Altogether

Bloc = Bcon + Bcon = _%g‘iB Z Gj-lj.
J

G is the muon-spin j coupling tensor.
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Spin-lattice relaxation rate Az and spin-correlation function

From
Az = 77’)’;% [(DXX(WM) + ¢YY(WH)] )

introducing the space Fourier transform,
Jaq) = Z Jjexp(—iq - j),

we get

_ D apB aB d3q
Azz/z@:«“ (a)A (m%JW-

A (a,w) = 5 [(30°(@,@)60 (~a) + (5 (~a)o 0" (a.)))]
is the spin correlation tensor,
A*P(q) = ¢** (@)™ (a) + 6" (a)G " (a)

is the muon-system coupling factor, and D = (%)27i(g/LB)2/vc.
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Spin-lattice relaxation rate Az and spin-correlation function

Recall

r=2 / E;A“ﬁ(qwﬁ(q,wu)é& (1)

Az is an integral of the spin-correlation function taken near 0 energy (neV to ueV range)

over the Brillouin zone with a weighting factor depending on the muon site.
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Superposition of uncorrelated field distributions

The distribution resulting from independent distributions is the convolution product of
each of the distributions.

> High transverse field case

» The evaluation of P§*(t) is trivial since its envelope is the inverse
Fourier transform of D3%(Bz)
» Example: a dilute spin glass in a matrix of atoms with nuclear moments

-2 Aé t2
P)s(tat(t) = exp l‘f exp (—fy#AL t) COS(’Y“ Bextt)

» Zero-field case

» Trivial case of Gaussian distributions, since the convolution of Gaussians
is a Gaussian

» Much trickier situation in the other cases, since P$*!(t) is not expressed
as an inverse Fourier transform

» Beware that the so-called Kubo golden formula is not of general validity
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Presence of short-range correlations in the field distribution
Zero-field case (1)

(1)

a

stat

Polarisation function Py
-
2
T
.

» Occasionally, ZF spectra in quasi-static magnetic systems are
found similar to the Kubo-Toyabe function but with a
minimum less pronounced than predicted.

2 4 6 8
Time 1 (44) Y
Prr(t)
» Taking the average of Kubo-Toyabe polarisation functions 3
with Gaussian-distributed field widths, & 10 [T ' '
fN 08 -
1 o (A = Ap)? T o6l
PGbG(t) = 7/ PKT(A, t) exp| ———— dA, %
vV 27TAGbG oo 2A2GbG § 04 1
5 02f
provides the required spectral shape. This is the so-called é oor, . . . \
g o 2 4 6 8

Gaussian-broadened-Gaussian function (Noakes and Kalvius,
1997).

Time 1 (A ™)
PGPS (t) as a function of
R = AGbg/AOy
with A2p = A3+ A% .
[g]



Presence of short-range correlations in the field distribution
Zero-field case (2)

» Monte Carlo simulations suggest the presence of short-range correlations to be responsible
for the weak dip (Noakes, 1999)

» The spectral shape close to the Kubo-Toyabe lineshape suggests the field distribution to be
close to a Gaussian

57 Bz ;
» Therefore, D.(Bz) o exp — Dc(Bz) x exp [—g (T)] with

2A2
g(x) = 1x2 4+ F(mx)® + 7 (max)*.

Example of YbyTioO7, a geometrically frustrated magnet with T. ~ 0.25 K.

T T T T T T T
0.18 - Yb,Ti,0; 1 06 F Yb,Ti,0; |
£ o016 T=0200K 05 B =2mT
& o4 Bey=2mT E 04 200 mK
S 0.12 X
> .1 - 4
£ 3 0.3
E 010 £ 02 E
E Q
2 o008 0.1 E
0.06 0.0 E
1 1 1 1 1 Il 1
0 2 4 6 8 10 —4 -2 0 2 4
Time 1 (us) BAA (-)

New distribution compared to Gaussian
distribution

Fits with the new distribution (full line) and the
Kubo-Toyabe function (dotted line)

— Presence of short-range correlations in the magnetically ordered state (Yaouanc et al, 201!()'@
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The stretched exponential function
The function
Pz(t) = exp [~(Azt)"],

with 0 < 8 < 1 is often used for the interpretation of uSR data. Sometimes, 8 > 1 is even
allowed (compressed exponential function).

It was introduced by Kohlrausch (1854), and can be understood as resulting from a
collection of exponential functions exp(—At) with a distribution P(s, 3) of relaxation
rates,

exp [f(Azt)B] = /°° P(s, B) exp(—sAzt)ds,

where s = XA/\z is a dimensionless relaxation rate.

T T T T T T T T T T T
10 - 1 3 20 ]
> (=%
< 038 2
5 i 1
S 06 B 3
< o
2 % 10 F ]
S 04 B °
E B
8 Z 05 F b
T 02fF g 2
& °
00 T 00 g
Il 1 1 Il 1 ..
0.0 05 1.0 L5 2.0 iriq'
Time t (A}) Ratio s = MAz




The stretched exponential function

> It is rarely physically justified except in the case of dilute
spin glasses, where 3 = 1/2 in the extreme motional
narrowing limit. Recall

42 A% ¢
Pz(t)=exp | — T

Ve ’ NdsSn,07
T=21K
0.5
» Sometimes a physically sound model approaches very \

well the stretched exponential function. Sl
Example of Nd2Sn>0O7, a geometrically frustrated magnet -
with Ty = 0.91 K.

0.4 75 m)
i

ToQuT]
o
5 T

o,

Nd,Sn,0; ]

zero-field

0.25 -

o

o

5]
T
L

21K

Asymmetry: a P§% (1)
o
o
T

o
5
T

0 2 4 6 o time : ) o
Time 1 (us)
Full line: stretched exponential with 8 = 0.70(3). A set of LF spectra fitted to the
Dotted line: exponential. dynamical Kubo-Toyabe model.

— Presence of quasi-static correlations in the paramagnetic phase L
(Dalmas de Réotier et al, 2017) irig
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Summary

» Computation of Px z(t) in a static By, for different field distributions

v

Origin and nature of the field at the muon site

v

Derivation of the form of the field distribution in selected cases

» Computation of Px z(t) when By, is dynamical

v

Effect of spatial correlations
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Zero-field polarisation function in magnets

Commensurate magnets: examples

T T T T T
= 025 | E 03|
£ [ { E = 02f
a 0.20 ;TN
$ 015k E LO01E
2 N
B 010 F E 2 00F
3 o
E oos | E E o1f <
< B-UB,C s
0.00 [ 2 3 2 ook
zero field @
L L L 1 1 03 F 4
0.0 0.1 0.2 0.3 0.4 L . L L
Time £ (us) 0.00 005 0.10 0.15
Time 7 (us)

Ferromagnetic transition at Tc = 74.5 K.

Antiferromagnetic transition at Ty = 57 K.
Powder sample.

Axial magnet, single crystal

1SR cannot directly tell whether a system is a ferro- or an antiferromagnet.
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Computation of the field distribution width

Alternative approach, case of nuclear moments (1)

Start from
1
Px(t) = ETr{PsysUXUX(t)}

with

O'X(t) = exp (i’H;;t t) oX exp (—iH;:t t) R

and Hiot = Hz,u + Hz,sys + Haip-
The field distribution arises from Hq;p, truncated to (high field and secular approximations)

po Yuyh?
ar 2r3
j J

,}:Zdip,” = (1 - 3(2052 ej)O'ZIjZ.

Ij: nuclear spin at site j (distance r; and polar angle 6; to the muon).
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Computation of the field distribution width

Alternative approach, case of nuclear moments (2)

Expanding Px(t) up to second order in t, we recover the formula

2 252 J.(

2 _ (Mo g +1) 2032

Ag = (E) E r—'ﬁf(l—3cos 0;)°,
R

already given.

Outlook:

» The method allows the electric field gradient acting on the nuclei to be accounted for in
the computation of Aé.

> The above method is equivalent to the Van Vleck formula (1948)
AZ _ﬁﬂ{[}[dip,nvgx]z}'

> Similar method for computation of the ZF field width A% o —ﬁﬂ{[Hdip,l,az]Z}.
n
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