Method Development in Bio-Deuteration: Towards Purification of Deuterated Lipopolysaccharides (LPS)

Luke Stephen Broughan, MBio Graduate

Student Seminar 30/07/2024

Neutron structural biology:

- X-ray scattering has been the workhorse of structural biology since the 1940s.
- Today, neutron scattering offers complementary advantages for biology...
 - **Deeply penetrative** of bulk samples of very large molecules (e.g. proteins).
 - Non-destructive can be combined with HPLC, AF4, etc. in situ.
 - Sensitive to light elements in biomolecules, H coordinates structure/function.
 - H/D contrast bio-deuteration reduces background, allows contrast variation techniques.

Muon Source

www.isis.stfc.ac.uk

@isisneutronmuon

uk.linkedin.com/showcase/isis-neutron-and-muon-source

Haertlein et al. (2016) Methods in Enzymology Ankner et al. (2013) Current Protocols in Protein Science

Deuteration for biological neutron scattering:

ISIS Neutron and Muon Source

www.isis.stfc.ac.uk

O @isisneutronmuon

ແກງ uk.linkedin.com/showcase/isis-neutron-and-muon-source

Koruza et al. (2018) Archives of Biochemistry and Biophysics Created with BioRender.com.

Bio-deuteration and efficiency:

- Cells on D-media produce D-biomolecules much more efficiently than chemical approaches...
- ...but D and D₂O are inhibitory in vivo D-cell culture is challenging and poorly characterised.
- D-cell culture needs large amounts of D_2O , but we **recycle filtered D_2O** for certain biomass:

ISIS Neutron and Muon Source www.isis.stfc.ac.uk

🔿 @isisneutronmuon

im uk.linkedin.com/showcase/isis-neutron-and-muon-source

Ramaraj et al. (2016) Emergent Life Sciences Research

Bacterial membranes – what and why?

- Gram-negative bacteria are surrounded by an inner membrane (IM) and outer membrane (OM).
- The OM, with its outer leaflet of lipopolysaccharides (LPS), provides many survival and virulence functions.
- Structural studies of the Gram-negative cell surface (e.g. with cryo-EM, AFM) can answer fundamental biological questions as well as reveal interactions with antibiotics and the immune system.

ISIS Neutron and Muon Source

@isisneutronmuon

uk.linkedin.com/showcase/isis-neutron-and-muon-source

Outer membrane proteins (OMPs) Adhesion, sensing, signalling, transport Outer OM leaflet: lipopolysaccharides **Outer membrane** Inner OM leaflet: (OM)phospholipids Peptidoglycan cell wall Periplasm Inner membrane (IM)Cytosol Lipopolysaccharide (LPS) Structural support, permeability barrier, antibiotic resistance, pathogenicity... Lipid A Core oligosaccharide **Repeating O-antigen**

Adapted from Clifton et al. (2015) Angewandte Chemie International Edition

Scope of my project:

- **D-LPS** are of interest for contrast variation NR and SANS experiments on **supported lipid bilayers** that simulate the bacterial cell surface.
- This work began **bacterial bio-deuteration** at ISIS:
 - 1. Adapt *E. coli* to grow under deuterated conditions (live bio-deuteration).
 - 2. Measure growth and biochemistry of D-*E. coli* to optimise deuterated cell culture.
 - 3. Develop protocol to purify *E. coli* membranes and separate out the LPS-rich OMs.

ISIS Neutron and Muon Source

O @isisneutronmuon

muk.linkedin.com/showcase/isis-neutron-and-muon-source

Bio-deuteration of *E. coli:*

- D/D₂O toxicity requires an adaptation protocol be devised and performed – stepping up D₂O exposure.
- E. coli (ATCC 11303[™]) was subcultured through a series of agar plates containing a minimal nutrient medium (ModC1) formulated with stepwise greater proportions of D₂O.
- Selection pressure for D tolerance by the end, clones surviving on ModC1 90% D₂O were obtained.
- "D-E. coli" were harvested and preserved.

ISIS Neutron and Muon Source

🖸 🔿 @isisneutronmuon

uk.linkedin.com/showcase/isis-neutron-and-muon-source

Characterising kinetics of D-E. coli:

Characterising biochemistry of D-E. coli:

- API 20E = biochemical assay panel designed for enterobacterial metabolic characterisation.
- Characterised *E. coli* grown on 0/30/60/90% D₂O, under both H₂O and D₂O assay conditions.

- LDC may be unable to utilise D due to greater C-D bond strength, disrupting pH/pD homeostasis.
- Likely causes denaturation of ONPG big implications for recombinant protein production, and a strategy to further support D-cell culture...?

ISIS Neutron and

Muon Source

www.isis.stfc.ac.uk

🕅 🔘 @isisneutronmuon

別 uk.linkedin.com/showcase/isis-neutron-and-muon-source

Juers et al. (2012) Protein Science Chen (2022) Deuterium Oxide and Deuteration in Biosciences Tomizawa et al. (2016) Biochimie Open

SANS2D Xpress measurements of D-E. coli:

- Measured *E. coli* cultured on ModC1 0/40/90% D₂O at very high OD (>2.5, stationary phase).
- SANS2D with rotating rack, max RPM, ambient temperature, detectors at 12 m.

A new protocol for bacterial membrane fractionation:

Reminder! The aim was to purify total membranes (OMs + IMs), then OMs and IMs from each other...

OM

IM

Previous methods have extracted LPS directly from bacteria with organic solvents. This approach is much safer, chemically cleaner, and preserves the function and lipidomic identity of each membrane.

ISIS Neutron and Muon Source www.isis.stfc.ac.uk

(O) @isisneutronmuon

m uk.linkedin.com/showcase/isis-neutron-and-muon-source

Rezania et al. (2011) Avicenna Journal of Medical Biotechnology Ahamad & Katti (2016) Journal of Microbiological Methods Shu & Mi (2023) Bio-Protocol Created with BioRender.com.

A new protocol for bacterial membrane fractionation:

- Based on Cian et al. (2020).
- Modified for compatibility with this E. coli strain and available BioLab equipment (Parr cell disruption vessel).
- Trialled with H-E. coli on LB, now applying to D-E. coli on ModC1 90% D₂O.
- Up to 3 L processed per run.
- 3-5 days end-to-end.

ISIS Neutron and

Muon Source

www.isis.stfc.ac.uk

@isisneutronmuon

uk.linkedin.com/showcase/isis-neutron-and-muon-source

Characterising membrane yields:

SDS-PAGE to visualise proteins (left) and LPS (right) from samples throughout purification:

Progressive clarification until cc Distinct | Clean prep of highly concentrated LPS in OMs, ready for of proteins in total membrane e> discrete reconstitution into synthetic membranes on beamline.

Further steps:

- Characterisation of D-E. coli and products on SANS2D – preliminary Xpress completed.
- Now applying scaled-up membrane prep to D-*E. coli* and preparing D-membranes – further characterisation with SDS-PAGE and HPLC.
- Potential to deuterate other bacterial strains via this method to expand the range of purified bacterial D-biomolecules available.
- Further development of the bio-deuteration production lines in the ISIS BioLabs.

ISIS Neutron and Muon Source

() @isisneutronmuon

ກ uk.linkedin.com/showcase/isis-neutron-and-muon-source

Luke Stephen Broughan

Bio-Deuteration Support Scientist Luke.Broughan@stfc.ac.uk

Peixun Li Science Lead, D-Lab Peixun.Li@stfc.ac.uk

Ludmila Mee Manager, BioLabs Ludmila.Mee@stfc.ac.uk

Sophie Ayscough (ESS/ISIS), Yao Chen, and Kun Ma for LPS guidance; Zoë Fisher (ESS), Hanna Wacklin-Knecht (ESS), and Karyn Wilde (ANSTO) for deuteration guidance; Sarah Langham and Rachel Pearce for technical support; Mingrui Liao (Manchester) for methodological advice; Rob Lillywhite (Warwick), Marion Patel (Warwick), and Sarah Youngs for administrative support; Najet Mahmoudi for SANS2D access and expertise; the Research Complex at Harwell for use of their facilities; James Taylor for risk assessment guidance; Robin Thorn (UWE) for microbiology advice.

